Numerical algorithms to estimate relaxation parameters and Caputo fractional derivative for a fractional thermal wave model in spherical composite medium
نویسندگان
چکیده
In this paper, we formulate a fractional thermal wave model for a bi-layered spherical tissue. Implicit finite difference method is employed to obtain the solution of the direct problem. The inverse analysis for simultaneously estimating the Caputo fractional derivative and the relaxation time parameters is implemented by means of the Levenberg–Marquardt method. Compared with the experimental data, we can obviously find out that the estimated temperature increase values are excellently consistent with themeasured temperature increase values in the experiment. We have also discussed the effect of the fractional derivative, the relaxation time parameters, the initial guess as well as the sensitivity problem. All the results show that the proposed fractional thermal wave model is efficient and accurate in modeling the heat transfer in the hyperthermia experiment, and the proposed numerical method for simultaneously estimating multiple parameters for the fractional thermal wave model in a spherical composite medium is effective. © 2015 Elsevier Inc. All rights reserved.
منابع مشابه
Magnetohydrodynamic Free Convection Flows with Thermal Memory over a Moving Vertical Plate in Porous Medium
The unsteady hydro-magnetic free convection flow with heat transfer of a linearly viscous, incompressible, electrically conducting fluid near a moving vertical plate with the constant heat is investigated. The flow domain is the porous half-space and a magnetic field of a variable direction is applied. The Caputo time-fractional derivative is employed in order to introduce a thermal flux consti...
متن کاملA numerical method for solving a class of distributed order time-fractional diffusion partial differential equations according to Caputo-Prabhakar fractional derivative
In this paper, a time-fractional diffusion equation of distributed order including the Caputo-Prabhakar fractional derivative is studied. We use a numerical method based on the linear B-spline interpolation and finite difference method to study the solutions of these types of fractional equations. Finally, some numerical examples are presented for the performance and accuracy of the proposed nu...
متن کاملA numerical study of fractional order reverse osmosis desalination model using Legendre wavelet approximation
The purpose of this study is to develop a new approach in modeling and simulation of a reverse osmosis desalination system by using fractional differential equations. Using the Legendre wavelet method combined with the decoupling and quasi-linearization technique, we demonstrate the validity and applicability of our model. Examples are developed to illustrate the fractional differential techniq...
متن کاملNumerical Solution of Caputo-Fabrizio Time Fractional Distributed Order Reaction-diffusion Equation via Quasi Wavelet based Numerical Method
In this paper, we derive a novel numerical method to find out the numerical solution of fractional partial differential equations (PDEs) involving Caputo-Fabrizio (C-F) fractional derivatives. We first find out the approximation formula of C-F derivative of function tk. We approximate the C-F derivative in time with the help of the Legendre spectral method and approximation formula o...
متن کاملTransient MHD Convective Flow of Fractional Nanofluid between Vertical Plates
Effects of the uniform transverse magnetic field on the transient free convective flows of a nanofluid with generalized thermal transport between two vertical parallel plates have been analyzed. The fluid temperature is described by a time-fractional differential equation with Caputo derivatives. Closed form of the temperature field is obtained by using the Laplace transform and fractional deri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied Mathematics and Computation
دوره 274 شماره
صفحات -
تاریخ انتشار 2016